伊藤(文)研究室へようこそ(レーザ計測・光ファイバ計測)

ホーム

メンバー

研究

講義

業績

フォト



島根大学HP

総合理工学部HP

機械・電気電子領域HP

●学術論文(査読あり)

(1) F. Ito and T. Tanifuji, “Wavelength bandwidth of plasma dispersion effect total reflection type optical switches,” Trans. IEICE Vol. E70-E, No.4, pp.269-271, 1987.

(2) H. Nakamoto, M. Matsuura, F. Ito, and T. Tanifuji, “Semiconductor waveguides with high coupling efficiency for single-mode optical fibers,” Trans. IEICE, Vol. E70-E, No. 4, pp. 264-266, 1987.

(3) F. Ito, T. Kuwabara, and H. Koga, “0.5 mm coated optical fibers design using Polyetherimide,” Trans. IEICE, Vol.E71-E, No.10, pp.987-991, 1988.

(4) F. Ito and T. Tanifuji, “Carrier-injection-type optical switch in GaAs with a 1.06-1.55 µm wavelength range,” Appl. Phys. Lett. Vol. 54, No. 2, pp. 134-136, 1989.

(5) F. Ito, K. Kitayama, and H. Yoshinaga, “Experimental verification of frequency level-off of modulational instability in the minimum dispersion region,” Appl. Phys. Lett. Vol. 54, No. 25, pp. 2503-2505, 1989.

(6) F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. Vol. 25, No. 7, pp. 1677-1681, 1989.

(7) F. Ito and K. Kitayama, “Optical implementation of the Hopfield neural network using multiple fiber nets,” Appl. Opt., Vol. 28, No. 19, pp. 4176-4181, 1989.

(8) F. Ito, K. Kitayama, and Y. Tamura, “Optical outer-product learning in a neural network using optically stimulable phosphor," Opt. Lett., Vol. 15, No. 15, pp. 860-862, 1990.

(9) F. Ito and K. Kitayama, “Photorefractive crystal waveguide with periodically reversed c axis for enhanced two-wave mixing,” Appl. Phys. Lett. Vol. 59, No. 16, pp. 1932-1934, 1991.

(10) K. Kitayama and F. Ito, “Optical signal processing using photorefractive effect,” Multidimensional Systems and Signal Processing, Vol. 2, pp. 401-419, 1991.

(11) F. Ito and K. Kitayama, “Distorsion free reconstruction through phase conjugation of holographic image in photorefractive crystal waveguide,” Trans. IEICE. Vol. E75-C, No. 6, pp.741-743, 1992.

(12) F. Ito, K. Kitayama, and H. Oguri, “Compensation of fiber holographic image distortion caused by intrasignal photorefractive coupling by using a phase-conjugate mirror,” Opt. Lett., Vol. 17, No. 3, pp. 215-217, 1992.

(13) F. Ito and  K. Kitayama, “Real-time holographic storage of a temporal bit sequence by using angular multiple recording of spectral components,” Opt. Lett., Vol. 17, No. 16, pp. 1152-1154, 1992.

(14) F. Ito, K. Kitayama, H. Oguri, “Holographic image storage in LiNbO3 fibers with compensation for intrasignal photorefractive coupling,” J. Opt. Soc. Am. B, Vol. 9, No. 8, pp. 1432-1439, 1992.

(15) F. Ito, K. Kitayama, and O. Nakao, “Enhanced two-wave mixing in a photorefractive waveguide having a periodically reversed c-axis by electrical poling technique,” Appl. Phys. Lett. Vol. 60, No. 7, pp. 793-795, 1992.

(16) F. Ito, K. Kitayama, and K. Tomomatsu, “Observation of the photorefractive effect in single-domain BaTiO3 crystal fiber,” Appl. Phys. Lett. Vol. 61, No. 18, pp. 2144-2146, 1992.

(17) F. Ito and K. Kitayama, “Interferometric parallel spectral detection of an optical signal with a finite time duration,” Opt. Lett., Vol. 18, No. 24, pp. 2156-2158, 1993.

(18) F. Ito, K. Kitayama, and O. Nakao, “Gain constant of two-wave mixing in periodically poled photorefractive crystal waveguide,” IEEE J. Quantum Electron., Vol. 30, No. 2, pp. 295-304, 1994.

(19) F. Ito, “Single-event observation of high-speed signals by interferometric spectral detection with a synthesized local oscillator,” Opt. Lett., Vol. 20, No. 12, pp. 1400-1402, 1995.

(20) K. Kitayama and F. Ito, “Holographic memory using long photorefractive fiber array,” Optical Materials, Vol. 4, pp. 392-398, 1995.

(21) F. Ito, “Interferometric demultiplexing experiment using linear coherent correlation with modulated local oscillator,” Electron. Lett. Vol. 32, No. 1, pp.14-15, 1996.

(22) H. Miyao, S. Aisawa, K. Noguchi, and F. Ito, “A novel tuning method for a neural control WDM demultiplexer,” IEEE Photon. Tech. Lett. Vol. 8, No. 9 pp. 1184-1186, 1996.

(23) F. Ito, “Single-shot high-speed signal detection by multiple-angle spectral interferometry,” IEEE J. Quantum Electron. Vol. 32, No. 3, pp. 519-524, 1996.

(24) F. Ito, “Demultiplexed detection of ultrafast optical signal using interferometric cross-correlation technique,” IEEE/OSA J. Lightwave Technol. Vol. 15, No. 6, pp. 930-937, 1997.

(25) F. Ito and K. Kitayama, “Temporal bit-sequence signal storage by using angular-multiple spectral volume holography (SPLUME),” IEEE J. Quantum Electron. Vol. 33, No. 5, pp. 633-641, 1997.

(26) X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method,” Opt. Lett., Vol. 32, No. 22, pp. 3227-3229, 2007.

(27) D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of Identification Fibers With Individually Assigned Brillouin Frequency Shifts for Monitoring Passive Optical Networks,” IEEE/OSA J. Lightwave Technol. Vol. 25, No. 5, pp. 1290-1297, 2007.

(28) Y. Koshikiya, N. Araki, H. Izumita, and F. Ito, "Newly developed optical fiber line testing system employing bi-directional OTDRs for PON and in-service line testing criteria", IEICE Trans. Commun., Vol. E90-B, No.10, pp.2793-2802, 2007.

(29) K. Okamoto and F. Ito, “Ultrafast measurement of optical DPSK signals using 1-symbol delayed dual-channel linear optical sampling,” IEEE Photon. Tech. Lett. Vol. 20, No. 11, pp. 948-950, 2008.

(30) D. Iida and F. Ito, “Low bandwidth, cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photon. Tech. Lett. Vol. 20, No. 20, pp. 1845-1847, 2008.

(31) D. Iida and F. Ito, “Detection sensitivity of Brillouin scattering near Fresnel reflection in BOTDR measurement,” IEEE/OSA J. Lightwave Technol. Vol. 26, No. 4, pp. 417-424, 2008.

(32) Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectmetry with SSB-SC modulator and narrow linewidth fiber laser,” IEEE/OSA J. Lightwave Technol. Vol. 26, No. 18, pp. 3287-3294, 2008.

(33) X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry,” IEEE J. Quantum Electron. Vol. 45, No. 6, pp. 594-602, 2009.

(34) K. Okamoto and F. Ito, “Nearly shot-noise limited performance of dual-channel linear optical sampling for observing ultrafast DPSK signals,” IEEE J. Quantum Electron. Vol. 45, No. 6, pp. 711-719, 2009.

(35) K. Okamoto and F. Ito, “Dual-channel linear optical sampling for simultaneously monitoring ultrafast intensity and phase modulation,” IEEE/OSA J. Lightwave Technol. Vol. 27, No. 12, pp. 2169-2175, 2009.

(36) K. Okamoto and F. Ito, “Simultaneous WDM signal detection realized by ultrafast field sampling,” Opt. Exp., Vol. 17, No. 8, pp. 6696–6702, 2009.

(37) K. Okamoto and F. Ito, “Simultaneous WDM signal detection realized by ultrafast field sampling,” Virtual Journal of Ultrafast Science (http://www.vjultrafast.org/), Vol. 8, No. 6, Photonics, 2009.

(38) D. Iida and F. Ito, “Cost effective- bandwidth-reduced Brillouin optical time domain reflectometry using reference Brillouin scattering beam”, Appl. Opt., Vol. 48, No. 22, pp.4302-4309, 2009.

(39) X. Fan, Y. Koshikiya, and F. Ito, “Full polarimetric phase-noise-compensated optical frequency domain reflectometry for distributed measurement of high PMD fibers,” Opt. Lett., Vol. 35, No. 1, pp. 25-27, 2010.

(40) K. Okamoto, F. Ito, M. Tsubokawa, Y. Sakamaki, and T. Hashimoto, “Channel-allocation-adaptive WDM signal observation based on sequential ultrafast field sampling,” Opt. Lett., Vol. 35, No. 9, pp. 1410-1412, 2010.

(41) K. Okamoto, F. Ito, M. Tsubokawa, Y. Sakamaki, and T. Hashimoto, “Channel-allocation-adaptive WDM signal observation based on sequential ultrafast field sampling,” Virtual Journal of Ultrafast Science (http://www.vjultrafast.org/), Vol. 9, No. 6, Photonics, 2010.

(42) Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise compensated optical frequency domain reflectometry,” IEEE/OSA J. Lightwave Technol., Vol. 28, No. 22, pp. 3323-3328 , 2010.

(43) X. Fan, Y. Koshikiya, and F. Ito, "Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR," Opt. Exp., Vol. 19, No. 20, pp. 19122-19128, 2011.

(44) M. Inoue, Y. Koshikiya, X. Fan, and F. Ito, "Coherence characterization of narrow-linewidth beam by C-OFDR based Rayleigh speckle analysis," Opt. Exp., Vol. 19, No. 21, pp. 19790-19796, 2011.

(45) Z. He, T. Kazama, Y. Koshikiya, X. Fan, F. Ito, K. Hotate, "High-reflectivity-resolution coherent optical frequency domain reflectometry using optical frequency comb source and tunable delay line," Opt. Exp. Vol. 19, No. 26, pp. B764–B769, 2011.

(46) H. Takahashi, X. Fan, Y. Koshikiya, and F. Ito, "Individual fault location in PON using pulsed pump-probe Brillouin analysis," Electron. Lett. Vol. 47, No. 25, pp. 1384-1385, 2011.

(47) K. Okamoto, T. Okamoto, X. Fan, F. Ito, Y. Sakamaki, and T. Hashimoto, "PMD vector estimation through time-resolved waveform analysis based on ultrafast xy-field sampling," IEEE/OSA J. Lightwave Technol., Vol. 30, No. 6, pp. 913-920, 2012.

(48) F. Ito, X. Fan, and Y. Koshikiya, "Long-range coherent OFDR with light source phase noise compensation," IEEE/OSA J. Lightwave Technol., Vol. 30, No. 8, pp. 1015-1024, 2012. (invited paper)

(49) H. Iida, Y. Koshikiya, F. Ito, and Y. Tanaka, "Ultra high sensitive coherent optical time domain reflectometry employing frequency division multiplexing," IEEE/OSA J. Lightwave Technol. Vol. 30, No. 8, pp. 1121-1126, 2012. (invited paper)

(50) X. Fan, Y. Koshikiya, N. Araki, F. Ito, "Field trials of PNC-OFDR in different environments for detecting short beat lengths,” IEEE Photon. Tech. Lett. Vol. 24, No. 15, pp. 1288-1291, 2012.

(51) 鬼頭千尋、古敷谷優介、荒木則幸、伊藤文彦, “光設備管理のための波長多重型多ビット光ID素子”, 電子情報通信学会論文誌 Vol. J95-B, No.12, pp. 1607-1615, 2012.

(52) M. Inoue, F. Ito, X. Fan, and Y. Koshikiya, “Very long range quasi-Fourier spectroscopy for narrowband lasers,” Opt. Exp., Vol. 20, No. 26, pp. B566-B573, 2012.

(53) Y. Koshikiya, X. Fan, F. Ito, Z. He, and K. Hotate, “High resolution PNC-OFDR with suppressed fading noise for dispersive media measurement,” IEEE/OSA J. Lightwave Technol., Vol. 31, No. 6, pp. 866-873, 2013.

(54) T. Okamoto, F. Ito, Y. Sakamaki, and T. Hashimoto, “Simultaneous dense DPSK WDM signal quality observation based on sequential ultrafast field sapling,” IEEE J. Quantum Electron. Vol. 49, No. 4, pp. 402-407, 2013.

(55) H. Takahashi, F. Ito, C. Kito, and K. Toge, “Individual loss distribution measurement in 32-branched PON using pulsed pump-probe Brillouin analysis,” Opt. Exp. Vol. 21, No. 6, pp. 6739-6748, 2013.

(56) F. Ito, M. Inoue, and T. Okamoto, “Verification of laser phase error measurement by using speckle analysis in coherent fiber reflectometry,” IEEE Photon. Technol. Lett. Vol. 15, No. 11, pp. 1084-1086, 2013.

(57) K. Toge and F. Ito, “Recent research and development of optical fiber monitoring in communication systems,” Photonic Sensors Vol. 3, No. 4, pp. 304-313, Sept. 2013 (invited paper).

(58) M. Inoue and F. Ito, “A novel speckle analysis scheme for coherence measurement using a standard phase modulator,” IEEE Photon. Tech. Lett., Vol. 26, No. 3, pp. 278-280, 2014.

(59) C. Kito, H. Takahashi, K. Toge, and F. Ito, “Loss distribution measurement of broken PON by end-reflection-assisted Brillouin analysis,” IEEE Photonics Technology Letters, Vol. 26, No. 11, pp. 1139-1141, 2014.

(60) H. Iida, K. Toge, and F. Ito, “Pulse waveform manipulation in FDM-OTDR for suppressing inter-channel crosstalk,” IEEE/OSA J. Lightwave Technol., Vol. 32, No. 14, pp. 866-873, 2014.

(61) T. Okamoto and F. Ito, “Laser phase noise characterization using parallel linear optical sampling,” IEEE/OSA J. Lightwave Technol., Vol. 32, No. 18, pp. 3119-3125, 2014.

(62) H. Takahashi, K. Toge, and F. Ito, “Connection loss measurement by bi-directional end-reflection-assisted Brillouin analysis,” IEEE/OSA J. Lightwave Technol., Vol. 32, No. 21, pp. 3602-3606, 2014.

(63) C. Kito, F. Ito, H. Takahashi, K. Toge, and T. Manabe, "Robust and high-Sensitivity Brillouin time-domain sensing with branched-fiber configuration," IEEE/OSA J. Lightwave Technol. Vol. 33, No. 20, pp.4291-4296, 2015.

(64) F. Ito and T. Manabe, “Recent Developments of Fiber Diagnosis Technologies in Optical Communication,” IEEE/OSA J. Lightwave Technol. Vol. 35, No. 16, pp. 3473-3482, 2017. (Invited paper)

(65) N. Kono, F. Ito, D. Iida, and T. Manabe, “Impulse response measurement of few-mode fiber systems by coherence-recovered linear optical sampling,” IEEE/OSA J. Lightwave Technol. Vol. 35, No. 20, pp. 4392-4398, 2017.

(66) T. Arakawa, F. Ito, D. Iida, and T. Manabe, "Simultaneous mode-by-mode impulse response measurement of multi-mode optical systems based on linear optical sampling," Optics express, Vol. 27, No. 9, pp. 12080-12089, 2019.

(67) Y. Osaka, F. Ito, D. Iida, and T. Manabe, "Measurement of spectral transfer matrix for DMD analysis by using linear optical sampling," IEICE Transactions on Communications, Vol. 103, No. 11, pp. 1233-1239, 2020.

(69) K. Fukushima, Q. H. Bui, K. Nakaya, M. G. Soares, A. Wada, S. Tanaka, and F. Ito, "EDF ring laser using cascaded-chirped long period fiber grating for temperature measurement," Optics expressVol. 28, No. 9, pp. 13081-13090, 2020.

(70) K. Fukushima, M. Guterres Soares, A. Wada, S. Tanaka, and F. Ito, "Loss-Modulation-Based Wavelength-Range Shifting of Tunable EDF Ring Laser with Cascaded-Chirped Long-Period Fiber Grating for Temperature Measurement," SensorsVol. 21, No. 7, pp. 2342, Mar. 2021.

(71) D. Miyake, and F. Ito, "Brillouin optical correlation domain analysis based on intensity modulation", Optical Fiber Technology, vol. 66, pp. 102656, Jul. 2021.

(72) C. Zhang, Z. Zhang, S. Liu, L. Jin, Y. Sugiura, S. Y. Set, S. Yamashita, and F. Ito, "Amplitude-Modulated Continuous-Wave Laser Rangefinder employing Bessel-Gauss Beamforming", Applied Optics, vol. 60, no. 24, Aug. 2021.(本号編集者おすすめ2本のうちの1本に採択

(73) K. Fukushima, A. Wada, S. Tanaka, F. Ito, "EDF laser temperature sensor using double-pass cascaded-chirped long-period fiber grating in sigma-cavity configuration", Optics Communications, vol. 508, 127713, Apr. 2022.

(74) Z. Zhang, C. Zhang, T. Shirahata, S. Yamashita, and S. Y. Set, "Overall Non-Mechanical Spectrally Scanned LiDAR Using Chirped Amplitude-Modulated Phase-Shift Method", Journal of Lightwave Technology, vol. 40, no. 7, pp. 1902-1913, Apr. 2022.

(75) S. Shimizu, C. Zhang, and F. Ito, "Measurement of Complex Waveforms in Wide Wavelength Range
by Using Wavelength Swept Light Source and Linear Optical Sampling"
, IEICE Transactions on Communications, vol. E105-B, no. 7, pp. -, Jul. 2022.

(76) K. Fukushima, M. Okano, A. Wada, S. Tanaka, and F. Ito, "EDF sigma laser using double-pass cascaded-chirped long-period fiber grating with birefringence compensation effect and its application for strain measurement", IEICE Electronics Express, vol. 19, no. 22, pp. 20220394-20220394, Nov. 2022.

(77) K. Fukushima, M. Okano, A. Wada, S. Tanaka, and F. Ito, "EDF laser displacement sensor based on bending characteristics of polarization-independent double-pass cascaded-chirped long-period fiber grating", IEICE Electronics Express, vol. 20, no. 2, pp. 20220496-20220496, Jan. 2023.

(77) M. Uyama, S. Okamura, C. Zhang, F. Ito, A. Nakamura, T. Okamoto, and Y. Koshikiya, "Bandwidth-Decomposed Measurement of Spatial-Mode Dispersion of Coupled 2-Core Fiber Employing Linear Optical Sampling", Journal of Lightwave Technology, vol. 41, no. 10, pp. 3153-3163, May 2023.

(78) S. Okamura, K. Osawa, C. Zhang, F. Ito, A. Nakamura, and Y. Koshikiya "Ultrafast measurement of vector spatial modes by using two-dimensional linear optical sampling." Optics Letters, vol. 48, no. 10, pp. 2551-2554, 2023.

(79) C. Zhang, T. Nagata, M. S. B. A. Sharifuddin, F. Ito, A. Nakamura, and Y. Koshikiya "Long-range frequency-modulated continuous-wave LiDAR employing wavelength-swept optical frequency comb." Optics Communications, vol. 545, no. 15, 129702, Oct. 2023.

(79) C. Zhang and F. Ito, "Optical fiber reflectometry detecting static and dynamic Rayleigh spectra", Measurement Science and Technology, vol. 34, 102001, 2023. (Invited)

(80) セットジイヨン、張哲元、張超、白畑卓磨、山口尚紀、山下真司、”三次元イメージング用先端ファイバレーザ光源”、光技術コンタクト、2024

(81) A. Acharya, D. Tanimura, C. Zhang, F. Ito, T. Sakaki, M. Komatsu, I. Doi, and T. Kogure, 2023. 

(82) C. Zhang, T. Nagata, M. S. B. A. Sharifuddin, F. Ito, A. Nakamura, and Y. Koshikiya, 2023.